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• Bird richness and bat activity were positively correlated with diversity in tree canopy height 9 

• Built surface cover is a poor correlate of tree canopy cover and height variability 10 
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Abstract 12 

Urban species and habitats provide important ecosystem services such as summertime cooling, 13 

recreation, and pollination at a variety of scales. Many studies have assessed how biodiversity 14 

responds to urbanization, but little work has been done to try and create recommendations that can 15 

be easily applied to urban planning, design and management practice. Urban planning often 16 

operates at broad spatial scales, typically using relatively simplistic targets for land cover mix to 17 

influence biodiversity and ecosystem service provision. Would more complicated, but still easily 18 

created, prescriptions for urban vegetation be beneficial?  Here we assess the importance of 19 

vegetation measures (percentage vegetation cover, tree canopy cover and variation in canopy 20 

height) across four taxonomic groups (bats, bees, hoverflies and birds) at multiple spatial scales 21 

(100, 250, 500, 1000m) within a major urban area (Birmingham, the United Kingdom). We found 22 

that small-scale (100-250m radius) measures of vegetation were important predictors for hoverflies 23 

and bees, and that bats were sensitive to vegetation at a medium spatial-scale (250-500m).  In 24 

contrast, birds responded to vegetation characteristics at both a small (100m) and large (1000m) 25 

scale. Vegetation cover, tree cover and variation in canopy height were expected to decrease with 26 

built surface cover. However, only vegetation height showed the expected pattern. The results 27 

indicate the importance of vegetation cover for supporting urban biodiversity, and show that 28 

relatively simple measures of vegetation character can be useful predictors of species 29 

richness/activity density.  They also highlight the danger of relying upon percentage built surface 30 

cover as an indicator of urban biodiversity potential.31 



Introduction 32 

 To describe patterns in urban biodiversity and understand their causes, researchers have 33 

employed varying measures of urban context (Sadler et al., 2010). Population density and distance 34 

to the urban center have facilitated coarse comparisons between studies; however, these measures 35 

do not always translate easily into urban management practice (McDonnell and Hahs, 2013). Other 36 

measures, such as built surface cover can be collected from digital data (maps and remote sensing) 37 

in a standardized manner, and are potentially more useful for translating into urban planning 38 

practice. Selecting the most appropriate measure of urban context is often seen as central to decision 39 

making around land-use planning, architecture and urban design (Boyko and Cooper, 2011). Many 40 

measures of urban context co-vary with other variables along rural-urban gradients (Andersson et 41 

al., 2009; Hale et al., 2013), so it is often not clear whether observed ecological responses are driven 42 

by the measure of urban context used, or by correlates with the gradient. Small-scale variability in 43 

urban habitat availability and character (e.g. availability and quality of nesting sites or feeding 44 

areas) can also strongly influence local biodiversity patterns (McDonnell and Hahs, 2013). 45 

However, at small scales, urban habitat character and availability can demonstrate high spatio-46 

temporal variability, making the collection of accurate habitat measurements both difficult and time 47 

consuming. As a suite of ecosystem services are thought to be related to biodiversity (Niemelä et 48 

al., 2010), the pragmatic challenge is therefore to identify landscape predictors of urban biodiversity 49 

patterns that reflect important ecological processes, which are easily generated, available, and 50 

understandable by practitioners.  51 

 Given the ecological importance of vegetation and the increasing availability of spatial 52 

vegetation data for urban areas, it is sensible to explore the use of these data for predictive 53 

modelling of urban biodiversity. Simple measures of urban vegetation have been used to assess 54 

patterns in biodiversity with some success (e.g., Chong et al., 2014; Ferenc et al., 2014) and 55 



approaches have been developed towards effective evaluation of structural urban habitat diversity 56 

(Young and Jarvis, 2001). However, new vegetation measures provide the opportunity to explore 57 

whether they provide additional value within ecological studies. Near Infrared imagery from 58 

satellites and aerial photographic surveys can be used to generate 2D maps of vegetation cover; a 59 

third dimension can be added using structural data derived from remote sensing techniques such as 60 

Light Detection And Ranging (LiDAR), providing fine-scale vegetation canopy height information 61 

(Lefsky et al., 2002). Stereophotogrammetry using aerial photography is an alternative source of 62 

data on canopy height, is simpler to collect than LiDAR and often cheaper and spatially more 63 

extensive. These techniques produce standardized high-resolution information on the structural 64 

complexity of vegetation over large spatial extents much more easily than traditional ground-based 65 

vegetation survey approaches.  66 

 Measuring environmental variables at multiple scales is recommended for ecological studies 67 

(Bellehumeur and Legendre, 1998) and may be particularly important in urban areas, where land-68 

cover and land-use can be highly variable in composition and structure over small distances (Luck 69 

and Wu, 2002). Taxa are known to respond to urban form at different spatial scales (Goddard et al., 70 

2010; Sattler et al., 2010), with some species responding to environmental variation at a very local 71 

level, and others responding to the urban form over much wider areas (Sadler et al., 2006). Some 72 

may move large distances because they require habitat resources at different times (e.g. nesting, 73 

foraging, etc.) that are sparsely distributed within the urban landscape (Ricketts, 2001), or because 74 

they possess traits that facilitate high mobility (e.g. flight), which give greater access to disparate 75 

resources. However, it is not clear at what spatial scales taxonomic groups respond most strongly to 76 

urban vegetation. The response of different species of urban birds to vegetation and tree cover have 77 

been found to vary (50–1000m) (Pennington and Blair, 2011), while less mobile species such as 78 



ground-dwelling spiders in urban areas can respond to micro-climatic variables at a smaller scale (< 79 

10m) (Sattler et al., 2010).  80 

 Policy frameworks surrounding the management and provision of urban green space are heavily 81 

geographically contextualized. Therefore, generalizations that have widespread planning and 82 

management applicability are not easily formulated (Sadler et al., 2010). In urban areas land-use 83 

parcels are often small, heterogeneous and managed by a diverse set of stakeholders, and planning 84 

input is usually sporadic and associated with early site development (Borgström et al., 2006; 85 

Ernstson et al., 2010; Sadler et al., 2010). Therefore, although broad-scale planning and 86 

management of urban green space is preferable, and can be enacted through a variety of planning 87 

approaches (e.g. Sadler et al., 2010), it is made difficult in practice because of the small-scale and 88 

site-specific management of privately owned property (Borgström et al., 2006; Ernstson et al., 89 

2010). This fragmented management of urban green spaces might therefore mismatch with the 90 

appropriate scale of management for highly mobile species. Identifying the scale(s) at which the 91 

biodiversity of particular taxa are most sensitive to landscape composition, and creating a set of 92 

easily derived environmental metrics that encapsulate landscape:biodiversity relationships, are 93 

important ecological research goals to help inform effective urban planning, design and 94 

management. 95 

 Numerous studies have investigated the distribution and habitat preferences of single species or 96 

taxonomic groups (e.g., Ahrné et al., 2009; Bates et al., 2014; Goertzen and Suhling, 2014; Hale et 97 

al., 2012; Martinson and Raupp, 2013), and meta-analyses of links between urban biodiversity 98 

patterns and urban structure are beginning to emerge (Beninde et al., 2015). Nonetheless, the 99 

responses of different taxonomic groups to simple as well as more structurally complex 100 

characteristics of urban vegetation remain unclear, partly due to the lack of standardized 101 

descriptions of the urban context between studies (McDonnell and Hahs, 2008).  102 



 This paper assesses the extent to which simple landscape vegetation measures can reflect broad 103 

patterns in biodiversity across taxonomic groups using existing survey data from a well-studied 104 

urban area (Birmingham, UK). The landscape vegetation measures used here can be extracted with 105 

relative ease for many urban areas.  106 

 We address the following research questions: 1) How much of the variation in species richness 107 

of birds (Aves), bees (Apoidea), hoverflies (Syrphidae) and activity density in bats (Chiroptera) is 108 

linked to measures of vegetation cover, tree cover and diversity of tree canopy height? 2) At which 109 

spatial scales does each taxa most strongly respond to these vegetation measures? 3) What is the 110 

nature of the relationships between vegetation and species richness/activity density? 4) To what 111 

extend does the proportion of built surface correlate with these vegetation metrics, and do these 112 

patterns vary with spatial scale?113 



Methods and Materials 114 

Study area 115 

 Birmingham in the West Midlands is one of the largest cities in the United Kingdom with a 116 

population of ~1 million people.  Approximately 50% of the city area (135 out of 268km2) is 117 

vegetated and 11% of the city area is covered by tree canopy (>4m). For each taxonomic group 118 

(birds, bees, hoverflies and bats) the study sites were selected to cover the variation in vegetation 119 

cover along the urban-rural gradient (for details see Bates et al., 2011; Hale et al., 2012; Rosenfeld, 120 

2012) 121 

Species data 122 

 Bees and hoverflies were sampled in 2010 using pan traps and sweep netting within 24 123 

cemeteries and churchyards (as these provided relatively well replicated habitats along the urban-124 

rural gradient) (Bates et al., 2011). Bat activity data were collected in 2009 using bat detectors 125 

along transects and at fixed points at 30 ponds (Hale et al., 2012). Bird presence was recorded from 126 

sightings or calls heard along transects in 2008-2011 within 68 urban green spaces (Rosenfeld, 127 

2012) (Fig. 1). All data collection was performed in suitable weather and seasons for the target taxa. 128 

The recorded species richness varied by taxa, with hoverflies less species rich (3-20), birds most 129 

species rich (15-35), and bees with intermediate species richness (8-28) (Appendix S1). Bat activity, 130 

indicated by the count of bat calls during a night ranged from 6 to 1143. These taxonomic groups 131 

were expected to differ in the way they used the habitats within which they were surveyed. Bees 132 

and hoverflies were likely to be mostly foraging within the survey areas, but some would also be 133 

‘nesting’/ovipositing and travelling through the survey areas. Birds were probably present in an area 134 

because they used it for a mixture of foraging and nesting, whereas bats were recorded feeding at 135 

ponds, but also commuting via the adjacent vegetation to other feeding areas.    136 



Vegetation data 137 

 Vegetation data covering the entire West Midlands were derived from 2007 aerial near-infrared 138 

and colour photography (Bluesky International Limited, Leicestershire, UK), using supervised 139 

classification within ArcGIS 10.3 (ESRI, Redlands, California, USA) (Hale et al., 2012).  The 140 

resulting 2m pixel resolution binary raster layer represented broad vegetation, including both 141 

ground vegetation and tree canopies (even if they were overhanging roads and other built surfaces). 142 

 Digital elevation models (DEM) and digital surface models (DSM) for the whole of the West 143 

Midlands were also sourced from Bluesky International Limited, which had been generated by 144 

applying stereophotogrammetric techniques to overlapping aerial plane photographs captured in 145 

2007 (https://www.bluesky-world.com/standard-height-data)).  These height data had a horizontal 146 

pixel resolution of 2m and a vertical resolution of 1m.  By differencing the two models, we created 147 

a raster that represented the height above the ground of large objects such as buildings and trees. 148 

 The vegetation and height data were combined to create additional layers representing tree 149 

canopy cover and tree canopy height using the Raster Calculator tool within ArcGIS.  First, the 150 

vegetation layer was attributed with height values.  Then, vegetation cover within 4m of buildings 151 

was excluded, using a building mask generated from Ordnance Survey MasterMap Data (2008). 152 

This processing step reduced the potential for small errors in georeferencing to cause buildings to 153 

be interpreted as vegetation.  Next, cells with height values < 4m were converted to NoData, which 154 

helped to exclude built structures or other objects within vegetated areas (cars, sheds, etc.), that 155 

could have been interpreted as small trees or shrubs.  The resulting raster represented the height of 156 

all tree cover ≥ 4m, which was then simplified to generate a binary raster representing all tree cover 157 

≥ 4m in height.  158 

 Previously, LiDAR data have been used to compare vegetation and animal data (Vierling et al., 159 

2008), and LiDAR was therefore considered as an alternative source of height data, but dismissed 160 



because it was only available for approximately half of the study area (The Geoinformation Group, 161 

Cambridge, UK). Photogrammetry provides less accurate height data than LiDAR (Lefsky et al., 162 

2002), but the data were more spatially extensive, allowing the capture of more of the urban 163 

gradient within the study area. For survey locations where both LiDAR and photogrammetry 164 

derived height data were available, we used these data to generate and compare estimates of tree 165 

canopy cover, median canopy height and standard deviation in canopy height (Appendix S2). These 166 

correlations were strong, indicating that despite its lower accuracy, photogrammetry derived data 167 

are a practical alternative in the absence of LiDAR for measuring canopy height. 168 

Explanatory vegetation variables 169 

 To determine if the response variables for each taxonomic group were sensitive to the structural 170 

complexity of urban vegetation, a range of explanatory variables were generated for each sample 171 

location: %vegetation cover, %tree canopy cover, median tree canopy height and variation in tree 172 

canopy height (standard deviation (STD)). Median tree canopy height and STD tree canopy height 173 

were intended to reflect structural complexity and these measures (including vegetation cover and 174 

tree canopy cover) have previously been used to explain biodiversity patterns in several studies (e.g. 175 

Vierling et al., 2011; Zellweger et al., 2013).  176 

 These variables were calculated using circular buffer zones around survey locations of multiple 177 

radii ranging from small (100m buffer), over medium (250 and 500m buffers) to large (1000m), to 178 

test for environment-taxa responses at different spatial scales (Sattler et al., 2010). Calculations 179 

were performed in ArcGIS using the Buffer and Zonal Statistics as Table tools. We accounted for 180 

overlapping polygons by sequentially calculating Zonal Statistics on subsets of non-overlapping 181 

polygons.  182 

 Although it seems intuitive that broad vegetation cover decreases with increasing built surface 183 

cover, this may not always be the case. Agricultural fields on the urban fringe have no built surface 184 



cover, yet at some times of the year they may also be devoid of vegetation. Conversely, built 185 

surfaces such as roads and civic squares may also have high levels of overhanging tree cover. Other 186 

measures of urban vegetation, like tree cover and diversity of tree canopy height, may have an even 187 

less predictable response to this urbanization gradient. To explore and compare the spatial 188 

structuring of the vegetation measures within a larger case study landscape, we extracted additional 189 

landscape GIS summary data covering the entire West Midlands region using a 1km grid of sample 190 

points, each buffered by 100, 250, 500 and 1000m. The resulting circular polygons were used to 191 

extract summaries both of built surface cover (Ordnance Survey Mastermap 2008) and our 192 

vegetation layers, using the isectpolyrst tool in the software Geospatial Modelling Environment 193 

(version 0.7.3.0) (Beyer, 2009-2012). This then allowed the variability in urban vegetation 194 

measures to be plotted against a gradient of built surface cover at different scales. We applied 195 

Generalized Additive Models (GAMs) to illustrate the potentially nonlinear relationship between 196 

urban vegetation measures and built surface cover. 197 

Analyses  198 

 Data exploration was applied following Zuur et al. (2010). Outliers were detected using 199 

Cleveland dotplots (only one outlier was found for one of the hoverfly models), Cook’s distances 200 

and hat-values. Explanatory variables were square root or log transformed if a few particularly high 201 

values were detected (%tree canopy cover was square root transformed for all buffer sizes for the 202 

bird data and bee data at 250, 500 and 1000m whereas %tree canopy cover was log transformed for 203 

hoverfly data at 250 and 1000m). Collinearity was assessed using Variance Inflation Factors (VIF) 204 

disregarding variables showing VIF values >3 from the VIF calculations (Zuur et al., 2010).  205 

Median tree canopy height was found to be collinear in models for bats (median canopy height 206 

100m and variation in tree canopy height 250m were collinear) and for hoverflies (median canopy 207 

height 250m and tree cover 250m were collinear). When excluding median tree canopy height VIF 208 



values for the remaining variables were < 3 and we therefore excluded median tree canopy height 209 

from the bat and hoverfly models. Linear models were selected if initial inspection of the 210 

relationship between response and explanatory variable using multi-panel scatterplots indicated a 211 

linear relationship. We created multi-variable models for all combinations of taxonomic group, 212 

variables and buffer sizes using GLM with Poisson error distribution using the log link function 213 

(one, two, three and four variables in a model = 624 combinations of variables for each taxonomic 214 

group). We used species richness as the response variable for bees, hoverflies and birds. The 215 

number of echolocation calls was used as a response variable for bats, as a broad indicator of bat 216 

activity. This measure was used because some species are not possible to differentiate reliably 217 

based upon their calls (Hale et al., 2012). The ‘best’ models were selected using Akaike’s 218 

Information Criterion corrected for small sample sizes (AICc) (Johnson and Omland, 2004), 219 

selecting the best set of models with ΔAICc < 2, where ΔAICc is the AICc of a model minus the 220 

lowest AICc in the model sets (Burnham and Anderson, 2002). AICc was calculated in R using the 221 

MuMIn package (Barton, 2015). Because many of the lower-ranked models contained 222 

uninformative variables (sensu Arnold, 2010), which when present did not contribute sufficient 223 

explanatory power to offset the penalty of their inclusion, we applied occam’s razor and selected the 224 

simpler model of the suites. For birds, season of observation was retained in the parsimonious 225 

model despite the lack of evidence of season as a variable in itself having a substantial effect.  226 

 Model validation was applied on the best models to verify the underlying assumptions as 227 

follows: If over dispersion was detected we used GLM with Negative Binomial error distribution 228 

instead of Poisson error distribution (Hilbe, 2011). Residuals versus fitted values were plotted to 229 

assess homogeneity of variance, and residuals versus each covariate to investigate model misfit. If 230 

non-linear patterns were detected in the residuals, polynomials were added to the GLM model. Non-231 

linear patterns in residuals were detected for bat models at 500m and 1000m (GLM with tree 232 



canopy cover^2 was used). Residuals were checked for spatial autocorrelation by visual inspection 233 

(Appendix S3). Modelling was performed in R version 3.2.0 (R Core team, 2015) using the mgvc 234 

(Wood, 2006) packages. To assess the model fit we compared deviance explained for the best 235 

model with deviance explained for a null model (intercept only) in the following way: Overall 236 

deviance explained for the best model was estimated by: 237 

deviance (null model) − deviance (best model)

deviance (null model)
 238 

Likewise, partial deviance explained by each variable in the best model was estimated by: 239 

deviance (alternative model without the target variable) − deviance (best model)

deviance (null model)
 240 

For each response variable in Negative Binomial GLM models we used the smoothing parameter 241 

(theta) from the best model throughout the set of models used to calculate the deviance explained. 242 

Summed partial %deviance explained for individual variables did not always add up to the total 243 

%deviance explained, for example, because of overlap in the variance explained by different 244 

variables within the same model.  245 

 To visualize the effect of vegetation cover, tree canopy cover, variation in canopy height and 246 

median canopy height on species richness we created a grid of points at 10m intervals covering a 247 

focal area within the case study city.  This area included a broad variety of green infrastructure and 248 

built surfaces.  For each of the resulting ~ 90,000 points we calculated the %vegetation, %tree cover 249 

and variation in tree canopy height (STD height) within a distance corresponding to the buffer size 250 

(100m, 250m or 500m) in the model with lowest AIC for bees and bats.  For each of the points, we 251 

then predicted the species richness/bat activity based upon the GLM model.  Please note, these 252 

visualizations were created for a sub-set of models and for a small focal area of the city to illustrate 253 

the contrasting habitat potential for different groups within the same location, and also to 254 

demonstrate the possible use of these maps for green infrastructure planning. 255 

256 



Results 257 

Final models 258 

 Bat activity increased with greater vegetation cover within a 500m radius but decreased with 259 

increasing tree cover at the same scale while variation in tree canopy height had only a small effect 260 

(Fig.2a, Table 1). Bird species richness increased with greater variation in tree canopy height (STD) 261 

at a large spatial extent (1000m) and increased with tree cover at small scale (100m) with very 262 

limited effect of vegetation cover and median canopy height at all scales (Fig. 2b, Table 1). In 263 

contrast, bees and hoverflies responded more strongly to vegetation metrics at smaller spatial scales. 264 

For hoverfly species richness we found a positive effect of vegetation cover and a negative effect of 265 

tree canopy cover at this same relatively small spatial scale (250m) and very small effects of 266 

variation in tree canopy height at larger scale (500-1000m) (Fig. 2c, Table 1). The best model set 267 

for bee species richness was similar to that for hoverflies, a positive effect of vegetation cover and a 268 

negative effect of tree canopy cover, but this time at the smallest spatial scale measured (100m), 269 

with a small effect of variation in tree canopy height (100m) and median canopy height (1000m) 270 

(Fig 2d, Table 1). There was no indication of spatial autocorrelation (Appendix S3). 271 

 Overall, the correlation between vegetation metrics and richness/activity density varied with 272 

taxonomic group. For bats, bees and hoverflies the deviance explained due to variation in large 273 

scale vegetation was considerable (41.99-68.57%, Table 1). For birds these variables provided 274 

much less explanatory power (19.12-21.33%, Table 1). 275 

Vegetation metrics along gradients of built surface cover 276 

 Within the West Midlands we found a strong negative relationship between built surface cover 277 

and vegetation cover across all scales. In contrast, tree canopy peaked at low to intermediate levels 278 

of built surface cover, before declining towards the most urban end of each gradient (Fig. 3, 279 



Appendix S4). There was no obvious patterning of the variability in tree canopy height along any of 280 

the gradients in built surface cover. 281 

Illustrating habitat suitability for bees and bats 282 

 The visualizations (Fig. 4) of the best habitat suitability models for bees and bats demonstrate the 283 

contrasting responses of different taxa to vegetation structure and spatial scale. Bee species richness 284 

was predicted to be high in open habitats (e.g. point X, Fig. 4, row C) and low in areas with dense 285 

tree cover (point Y, Fig. 4, row C).  It was also found to be sensitive to changes in vegetation cover 286 

at a fine spatial scale, which can be seen by the sharp change in predicted bee species richness 287 

between points X and Y within Fig. 4 (row C).  In contrast, bat call activity was predicted to be very 288 

similar at points X and Y (Fig. 4 row D), as the landscape surrounding these locations was found to 289 

be very similar when measured at the coarser scales used in the best model (250 - 500m).290 



Discussion 291 

 In this study we considered vegetation metrics that: 1) varied in their level of detail and 2) were 292 

measured at a range of spatial scales. Our results reveal that for hoverflies, bees, bats, and to a lesser 293 

extent birds, simple vegetation measures derived from remote sensing data explain appreciable 294 

amounts of variation in species richness and activity-density (Table 1). In general, vegetation cover 295 

at a small scale (100-250m radius) was most important for bees and hoverflies. The response of bats 296 

was strongest at an intermediate scale (250-500m), whilst birds responded to vegetation at both a 297 

small (100m) and large (1000m) scale. As the data used in this study are limited spatiotemporally 298 

and to only some taxonomic groups, the results need to be applied carefully. Nonetheless, because 299 

of our use of simple and spatially explicit vegetation metrics, the relationships we have identified 300 

between urban vegetation and biodiversity could be directly translated into recommendations for 301 

urban planning, design and management (see section Planning, design and management 302 

implications).   303 

Vegetation cover and structure 304 

 Whilst our results cannot be used to better understand the ecology of the studied taxa, some 305 

broad observations can be made on their associations with vegetation cover and structure. Bat, bee 306 

and hoverfly assemblages were strongly and positively associated with vegetation cover - the 307 

simplest metric measured in this study.  Such a result was expected, given the direct dependency of 308 

many invertebrates upon vegetation, and the insectivorous nature of UK bat species. Vegetation 309 

cover, or its coarse negative correlate, built surface cover, have been shown by several authors to be 310 

important variables explaining diversity of bee assemblages (e.g. Fortel et al., 2014; Hülsmann et 311 

al., 2015); and both vegetation cover (Chong et al., 2014) and tree cover (Ferenc et al., 2014) have 312 

been found to correlate with the species richness of birds. The negative effect of tree canopy cover 313 

on bees and hoverflies may be related to their broad preference for non-shaded areas in temperate 314 



climates, despite the association of some species with woodlands (Branquart and Hemptinne, 2000). 315 

A higher degree of taxon-specific responses may have been anticipated because of different 316 

dispersal modes and resource requirements. For example, different responses to landscape 317 

characteristics have been found for bees and hoverflies in agricultural landscapes (Jauker et al., 318 

2009). 319 

 Overall, the amount of explained deviation by the best models ranged from 19.12% - 68.57% 320 

indicating that these easy-to-measure vegetation variables are particularly useful predictors for 321 

some groups (hoverflies, bees and bats) while other taxonomic groups (birds) may be more 322 

sensitive to patch quality, broader landscape scales or other variables not measured in this study 323 

such as structural connectivity (LaPoint et al., 2015). There was some evidence for a positive effect 324 

of variation of tree height (within 1000m) on bird species richness. Whilst the mechanism(s) behind 325 

this relationship are unclear, this may reflect a higher number of nesting (Zellweger et al., 2013) 326 

and foraging (Laiolo, 2002) opportunities as a result of a greater mix of tree ages and species.   327 

Urban gradients and vegetation 328 

Since the gradient paradigm was suggested for studying ecological changes in urban areas 329 

(McDonnell and Pickett, 1990) it has been used by many researchers to quantify the degree to 330 

which the anthropogenic intensity of human settlements impact organisms (McDonnell and Hahs, 331 

2008). Although patterns vary by taxonomic group, scale and study (McDonnell and Hahs, 2008), 332 

species richness is generally lowest in the most heavily urbanized areas (e.g. urban cores) whereas 333 

abundance often peaks at low to intermediate levels of urbanization (McKinney, 2008). Urban 334 

gradient studies typically use demographic variables, landcover/landuse variables or landscape 335 

structure metrics to define the gradient, but rarely assess what the gradient represents in terms of 336 

available habitat for biodiversity (but see Berland, 2012; Hahs and McDonnell, 2006).  Although 337 

the use of built landcover/density gradients might facilitate the translation of results into planning 338 



practice, there is the danger that a low level of built surface cover ends up being adopted as an 339 

indicator of high habitat suitability for all species groups. Vegetation cover, tree cover and diversity 340 

of tree canopy height exhibited highly contrasting patterns when compared along gradients of built 341 

surface cover, and all patterns were independent of the scale at which the proportion of built surface 342 

cover was measured. Our results serve to illustrate that, as one might expect, it is reasonable to use 343 

broad built surface cover as a negative linear proxy for vegetation cover in urban areas. However, 344 

we demonstrate that built surface cover is likely to be a relatively poor indicator of tree canopy 345 

cover and variability in canopy height. Trees are commonly planted within built civic spaces and 346 

frequently overhang roads; these trees clearly have some ecological value, which is missed by 347 

simple metrics such as the percentage of built surface cover (derived from cartography). 348 

Planning, design and management implications 349 

We believe that the simple approach presented in this paper using readily available data on 350 

vegetation in cities is a valuable means of generating a replicable analytical approach that can 351 

translate into urban planning practice. The results presented support the idea that strategic 352 

landscape-scale planning for urban bird communities should take direct advantage of canopy height 353 

mapping to identify locations with diverse tree heights that could be protected. Such planning 354 

should also seek to enhance canopy variability through strategic planting (e.g. species, variety, 355 

rootstock) and management (e.g. pruning) of trees (Hale et al., 2015).  356 

 Our results also support the retention and enhancement of even relatively small habitat patches 357 

within cities as bee and hoverfly assemblages responded to vegetation at a small scale (100-250m). 358 

Increased total vegetation cover within 250-500m of a particular location will likely enhance bat 359 

activity. Should urban planning policy seek to specifically provide habitats for ground foraging 360 

pollinators within development sites, more emphasis should be put on the retention and creation of 361 

low-growing vegetation than on enhancing tree cover, but it should be recognized that pollinators 362 



also forage on tree blossoms, particularly in the spring.  Similarly, sites intended to support high bat 363 

activity should place greater emphasis on semi-open areas, with high variability in tree canopy 364 

height. 365 

 Nature conservation and planning practitioners are clearly interested in encouraging 366 

developments that maximize the percentage vegetated area, as well as the abundance of more 367 

specific ecological features (Kruuse, 2010). Our study helps to improve the empirical basis for the 368 

development of relatively straightforward guidance on vegetation provision/retention in urban 369 

planning and to clarify the most appropriate spatial scale and location at which vegetation should be 370 

clustered within development sites (Table 2). The visualization approach employed in Fig. 4 might 371 

be particularly useful in this respect. For example, if there is a desire to increase pollinator diversity 372 

in a particular part of the city, any new areas of gardens, amenity grassland or other short vegetation 373 

should be located as close to each other as possible, and also close to existing patches of short 374 

vegetation that are just outside the boundary of the development site.  In contrast, proposals for new 375 

bat habitats should carefully consider whether there is sufficient vegetation cover (that includes 376 

scattered trees of varying heights) within 250 - 500m of the site. Again, we would like to emphasize 377 

that these vegetation models should be used as an indication of biodiversity potential - other factors 378 

such as patch quality or functional connectivity also need to be addressed within planning and 379 

management practice. However, it is important not to overlook the need to specify the minimum 380 

levels of ground vegetation and tree cover, as basic requirements for supporting particular taxa. 381 

Future research directions 382 

 Based on our results, we recommend that analyses of the broad ecological potential of urban 383 

areas should be based upon readily available high-resolution vegetation data for the whole 384 

landscape. The variables used in this study can easily be calculated for other urban areas where 385 

basic land use mapping and remotely sensed data have been produced, and can be used for future 386 



research comparisons across other cities. However, as each city has a unique landscape character 387 

and associated fauna and flora, it is still necessary to test our models more widely. In addition, cities 388 

and urban developments are by no means static and the history of the built environment may play 389 

an important role in shaping ecological communities (e.g. changes in land use, species dispersal, 390 

evolution and extinction, regional species pools, geographical isolation) as has been found in more 391 

natural areas (Collins et al., 2000; Faeth et al., 2011). 392 

 Although simple two-dimensional vegetation measures are often considered sufficient from a 393 

management perspective (McDonnell and Hahs, 2013), the use of variables reflecting the three-394 

dimensional vegetation structure has proved useful in this study. More sophisticated measures such 395 

as LiDAR-derived % penetration, or vegetation heights from multiple returns, may therefore prove 396 

to be even more valuable (Hancock et al., 2015). As LiDAR data becomes more readily available it 397 

would be interesting to explore whether this provides additional explanatory power when modeling 398 

ecological patterns in urban areas. 399 

 Most of our results indicated the importance of small-medium scale management for enhancing 400 

the species richness or activity of various taxonomic groups. Despite the preference for top-down, 401 

broad-scale planning and management of urban green space (Sadler et al., 2010) and its associated 402 

difficulties, our results provide grounds for optimism, indicating that local-scale vegetation 403 

management can be beneficial for urban biodiversity.   404 



Appendix S1 405 

Species richness and number of calls (bats) for each taxonomic group within sites. 406 

Appendix S2  407 

Correlations between explanatory variables derived from the LiDAR data set (X-axes) and the 408 

photogrammetry data set (Y-axes). 409 

Appendix S3  410 

Bubble plots of residuals from final models for each taxonomic group against the X/Y coordinates. 411 

Appendix S4  412 

Ranges of vegetation metrics varying in complexity from vegetation cover, tree canopy cover, 413 

mean, median and maximum canopy height to standard deviation of tree canopy height reflecting 414 

variation in tree canopy height. The metrics are derived from photogrammetry data for each buffer 415 

size (100, 250, 500, 1000m).  416 
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Tables 541 

Table 1 Model results for the set of best final models (ΔAICc<2) for each taxonomic group: bats (number of calls), bird (species richness), 542 

hoverfly (species richness) and bee (species richness). Explanatory variables were %vegetation cover (Veg. Cover), %tree canopy cover 543 

(Tree Cover), standard deviation of tree canopy height (STD height), and season (for birds only). Log and square root transformation of 544 

explanatory variables are indicated where relevant. Total %deviance explained for the final models, partial %deviance explained for 545 

significant explanatory variables, intercept, variable slope estimates (β-estimates), standard errors (Std. Error), AICc and N are given. N 546 

varies within taxonomic group due to the removal of outliers. 547 

Response 

Total 

deviation 

explained 

(%) Partial deviation explained (%) Intercept β-estimates Std. Error AICc N 

Bats (no. calls); 

NB GLM, log link 45.50 

Veg. Cover_500 (41.85),                              

STD_250 (31.57),                           

Tree cover_500 (21.09) 2.34 

Veg. Cover_500 (0.04),                         

STD_250 (0.56),                           

Tree cover_500 (-0.06) 

Veg. Cover_500 (0.01), 

STD_250 (0.12),                              

Tree cover_500 (0.02) 395.19 29 

Bats (no. calls) 48.96 

Veg. Cover_500 (43.94), 

STD_250 (27.00), 

Tree cover_500 + 

Tree cover_500^2 (24.55) 1.82 

Veg. Cover_500 (0.04), 

STD_250 (0.52), 

Tree cover_500 (0.01), 

TreeCover_500^2 (-0.002) 

Veg. Cover_500 (0.01), 

STD_250 (0.12), 

Tree cover_500 (0.06), 

TreeCover_500^2 (0.001) 396.39 29 

Bats (no. calls) 41.99 

Veg. Cover_250 (38.33), 

STD_250 (24.86), 

Tree cover_500 (19.51) 2.81 

Veg. cover_250 (0.03), 

STD_250 (0.46), 

Tree cover_500 (-0.06) 

Veg. Cover_250 (0.01), 

STD_250 (0.12), 

Tree cover_500 (0.02) 397.09 29 

Bird (species richness); 

Poisson GLM, log link 19.12 

  STD_1000 (11.78), 

sqrt (Tree cover_100) (5.53), 

season (0.29) 2.43 

 STD_1000 (0.11), 

sqrt (Tree cover_100) (0.02), 

season (0.02) 

intercept (0.15), 

STD_1000 (0.04), 

sqrt (Tree cover_100) (0.01), 

season (0.04) 663.25 124 



Bird (species richness) 21.33 

STD_1000 (11.94), 

sqrt (Tree cover_100) (7.71), 

Veg. cover_250 (2.22), 

season (0.29) 2.48 

STD_1000 (0.11), 

sqrt (Tree cover_100) (0.03), 

Veg. cover_250 (-0.001), 

season (0.02) 

intercept (0.15), 

STD_1000 (0.04), 

sqrt (Tree cover_100) (0.01), 

Veg. cover_250 (0.001), 

season (0.04) 663.67 124 

Bird (species richness) 20.32 

 STD_1000 (11.58), 

sqrt (Tree cover_100) (6.65), 

Veg. cover_100 (1.21), 

season (0.29) 2.46 

STD_1000 (0.11), 

sqrt (Tree cover_100) (0.03), 

Veg. cover_100 (-0.001), 

season (0.02) 

STD_1000 (0.04), 

intercept (0.15), 

sqrt (Tree cover_100) (0.01), 

Veg. cover_100 (0.001), 

season (0.04) 664.47 124 

Bird (species richness) 20.00 

STD_1000 (12.35), 

sqrt (Tree cover_100) (6.42), 

Veg. cover_500 (0.89), 

season (0.29) 2.46 

STD_1000 (0.11), 

sqrt (Tree cover_100) (0.02), 

Veg. cover_500 (-0.001), 

season (0.02) 

intercept (0.15), 

STD_1000 (0.04), 

sqrt (Tree cover_100) (0.01), 

Veg. cover_500 (0.001), 

season (0.04) 664.72 124 

Bird (species richness) 19.47 

STD_1000 (11.98), 

sqrt (Tree cover_100) (4.01), 

Median_100 (0.35), 

season (0.29) 2.45 

STD_1000 (0.11), 

sqrt (Tree cover_100) (0.03), 

Median_100 (-0.01), 

season (0.02) 

intercept (0.15), 

STD_1000 (0.04), 

sqrt (Tree cover_100) (0.01), 

Median_100 (0.01), 

season (0.04) 665.14 124 

Bird (species richness) 19.40 

STD_1000 (12.07), 

sqrt (Tree cover_100) (5.79), 

Veg. cover_1000 (0.28), 

season (0.29) 2.45 

 STD_1000 (0.11), 

sqrt (Tree cover_100) (0.02), 

Veg. cover_1000 (-0.001), 

season (0.02) 

intercept (0.15), 

STD_1000 (0.04), 

sqrt (Tree cover_100) (0.01), 

Veg. cover_1000 (0.001), 

season (0.04) 665.20 124 

Hoverfly (Species 

richness); 

Poisson GLM, log link 66.09 

Veg. Cover_250 (62.68), 

log10(Tree cover_250) (39.46) 2.28 

Veg. Cover_250 (0.02), 

log10(Tree cover_250) (-1.34) 

intercept (0.27), 

Veg. Cover_250 (0.003), 

log10(Tree cover_250) (0.31) 113.16 24 

Hoverfly (Species 

richness) 63.17 

Veg. Cover_100 (59.77), 

log10(Tree cover_250) (37.50) 2.10 

Veg. Cover_100 (0.02), 

log10(Tree cover_250) (-1.28) 

intercept (0.27), 

Veg. Cover_100 (0.003), 

log10(Tree cover_250) (0.30) 114.62 24 

Hoverfly (Species 

richness) 68.57 

Veg. Cover_250 (65.14), 

log10(Tree cover_250) 

(33.39), 

STD_500 (2.48) 2.62 

Veg. Cover_250 (0.02), 

log10(Tree cover_250) (-1.28), 

STD_500 (-0.12) 

intercept (0.41), 

Veg. Cover_250 (0.004), 

log10(Tree cover_250) (0.32), 

STD_500 (0.11) 114.89 24 



Hoverfly (Species 

richness) 68.14 

Veg. Cover_250 (63.83), 

log10(Tree cover_250) 

(38.65), 

STD_1000 (2.05) 2.61 

Veg. Cover_250 (0.02), 

log10(Tree cover_250) (-1.33), 

STD_1000 (-0.10) 

intercept (0.42), 

Veg. Cover_250 (0.004), 

log10(Tree cover_250) (0.31), 

STD_1000 (0.10) 115.10 23 

Bee (species richness); 

Poisson GLM, log link 48.40 

Veg. Cover_100 (40.83), 

Tree cover_100 (30.20) 2.50 

Veg. Cover_100 (0.01), 

Tree cover_100 (-0.02) 

intercept (0.15), 

Veg. Cover_100 (0.003), 

Tree cover_100 (0.005) 134.90 24 

Bee (species richness) 51.12 

Veg. Cover_100 (42.25), 

Tree cover_100 (29.16), 

STD_100 (2.72) 2.35 

Veg. Cover_100 (0.01), 

Tree cover_100 (-0.02), 

STD_100 (0.06) 

intercept (0.21), 

Veg. Cover_100 (0.003), 

Tree cover_100 (0.007), 

STD_100 (0.06) 136.83 24 

Bee (species richness) 51.47 

Tree cover_100 (26.75), 

Veg. Cover_100 (17.45), 

log(Median_1000) (3.07) 1.84 

Tree cover_100 (-0.02), 

Veg. Cover_100 (0.01), 

log(Median_1000) (0.82) 

intercept (0.65), 

Tree cover_100 (0.005), 

Veg. Cover_100 (0.003), 

log(Median 1000) (0.78) 136.71 24 

 548 

  549 



Table 2 Translation of model results of model with lowest AICc for each taxonomic group into implications for conservation planning 550 

practice. The importance category is derived from the partial deviation scores listed in Table 1. Low importance is an indication that the 551 

presence of vegetation, trees, or trees of different heights might be less important than other site or context based variables (e.g. habitat 552 

quality, disturbance or ecological connectivity). 553 

Taxa Important variable(s) 
Most relevant 

scale 
Direction Implications Importance 

Bats % vegetation cover  500m Positive 

A greater amount of vegetation at this spatial scale is associated with 

higher bat activity. We found increasing vegetation cover from 50% 

to 80% was associated with a tripling in bat activity. These results 

support the retention, creation and enhancement of even relatively 

small habitat patches within urban areas. Plausible causes include 

greater availability of their insect prey, more roosting sites or greater 

cover/darker areas to help avoid predators.   

High 

  

Variation in tree canopy height 250m Positive 

Greater structural diversity potentially provides a broader variety of 

potential roosting and feeding habitats. The significance of this 

variable indicates the need for the retention of mature trees over 

medium spatial scales, as well as ensuring a diversity of tree size/age 

classes.  

Medium  

  % tree canopy cover  (trees > 4m) 500m Negative 
Too dense/extensive tree cover may reduce habitat available for bat 

species which feed and commute along tree lines and forest edges.  
Medium 

Birds Variation in tree canopy height 1000m Positive 

Greater structural diversity is known to provide a broader variety of 

potential territories, nesting and feeding habitats. This result 

indicates the need for the retention of mature trees over large spatial 

scales, as well as ensuring a diversity of size/age classes.   

Low  

  % tree canopy cover  (trees > 4m) 100m Positive 

The greater potential for high bird species richness in areas with 

more trees at a local level may be due to higher availability of 

nesting and foraging sites. 

Low   

  % vegetation cover 250m Negative Minor contribution to the model – no obvious implications Subsidiary 

  Median canopy height 100m Negative Minor contribution to the model – no obvious implications Subsidiary  



 554 

Hoverflies % vegetation cover 250m Positive 

We found a greater potential for high hoverfly species richness in 

areas of high vegetation cover.  This could be due to higher 

availability of food resources (flowers and larval food sources). 

Increasing vegetation cover from 40% to 80% doubled hoverfly 

species richness. The results support the creation, retention and 

enhancement of even relatively small habitat patches within urban 

areas, but habitat quality should still be an important focus. 

High 

  % tree canopy cover  (trees > 4m) 250m Negative 

Some hoverfly species prefer sunny patches and may be less 

abundant in areas shaded with high levels of tree canopy cover.  The 

results support the need to be cautious about dense tree planting in 

areas where high pollinator diversity is desired. 

High 

  Variation in tree canopy height  500m Negative Minor contribution to the model – no obvious implications Subsidiary 

Bees % vegetation cover 100m Positive 

We found a greater potential for high bee species richness in areas of 

high vegetation cover. This could be due to higher availability of 

food resources (flowers). Increasing small scale vegetation cover 

from 20% to 80% was associated with a doubling of bee species 

richness. The results support the creation, retention and enhancement 

of even relatively small habitat patches, but habitat quality should 

not be ignored. 

High 

  % tree canopy cover  (trees > 4m) 100m Negative 

Most bee species prefer sunny/warm patches and as expected we 

found less species richness in areas of high tree cover.  Increasing 

tree cover from 5% to 45% was associated with a reduction in bee 

species richness of 50%. Be cautious about dense tree planting 

where high pollinator diversity is desired. 

Medium 

  Variation in tree canopy  height 100m Positive Minor contribution to the model – no obvious implications Subsidiary 

  Median canopy height  1000m Positive Minor contribution to the model – no obvious implications Subsidiary 



Figure legends 555 

Fig. 1. Map of study sites for the four taxonomic groups (birds (n=68), bees (n=24), hoverflies 556 

(n=24) and bats (n=30)). The administrative boundaries for Birmingham and the West Midland are 557 

shown.  Inset illustrates the approximate position of the West Midlands within the UK. 558 

Fig. 2. Relationships between the best explanatory variables and species richness. Partial plots for 559 

the best model from each set of best models (Table 1) after accounting for uninformative variables 560 

as determined by AICc for each taxonomic group: a) bats, b) birds, c) bees and d) hoverflies) are 561 

depicted. As season did not have a substantial effect in the birds model both seasons are depicted 562 

with one line. The explanatory variables are vegetation cover (veg. cover, %), tree cover (%) and 563 

standard deviation of canopy height (STD) for the stated buffer sizes. Each row represents a model; 564 

points indicate raw values and dotted lines show 95 % credible intervals for the mean. 565 

Fig. 3. Changes in a) %vegetation cover, b) %tree canopy cover and c) standard deviation (STD) of 566 

tree canopy height along gradients of built surface cover (according to Ordnance Survey Mastermap 567 

Data). The data were extracted at four different spatial scales (100, 250, 500 and 1000m radius 568 

buffers) using a 1km grid of points covering the West Midlands. Lines represent fitted Generalized 569 

Additive Models.  570 

Fig. 4. Habitat suitability for bees and bats in the Selly Park neighborhood of Birmingham, UK. 571 

The varying vegetation cover and tree occurrence within the urban landscape affect the predicted 572 

bee species richness and bat activity. Right panel is an inset of the black box within the left panel. 573 

Row A) Aerial photograph of the Selly Park neighborhood, B) Variation in vegetation height. C) 574 

Predicted bee species richness based on the Poisson GLM model with lowest AICc (see Table 1). 575 

D) Predicted bat activity based on the Negative Binomial GLM with lowest AICc (see Table 1). To 576 



illustrate the difference between the bee and bat models, we draw attention to a vegetated patch of 577 

gardens with few trees (X) and an adjacent public green space with high levels of tree cover (Y). 578 


